For investors
股价:
5.36 美元 %For investors
股价:
5.36 美元 %认真做教育 专心促就业
数据分析师需要学哪些课程?
数据分析师需要学习的课程大致可以统称为:1.计算机科学,2.统计,3.领域专业知识。当然对于刚入门的人来说一般需要学习基础的工具以及业务知识,随着自身职业的发展方向开始深入算法等相关技术。
一:计算机科学
计算机科学与编程入门(使用Python)计算机系统工程:本课程涵盖有关计算机软件和硬件系统工程,控制复杂性的技术的主题;使用客户端-服务器设计,虚拟内存和线程的强大模块化;网络;并行活动的原子性和协调性;恢复和可靠性;隐私,安全性和加密;和计算机系统对社会的影响。算法简介:它涵盖了用于解决计算问题的常见算法,算法范例和数据结构。人工智能:本课程向学生介绍人工智能的基本知识表示,问题解决方法和学习方法。
二、数理统计
应用数学:面向计算机科学和工程的离散数学简介。
概率与统计简介(使用R编程):本课程对应用中的概率和统计进行了基础介绍。主题包括:随机变量,概率分布,贝叶斯推断,假设检验,置信区间和线性回归。
线性代数(使用R编程或其他数学工具):本课程涵盖矩阵理论和线性代数
统计/机器学习(使用R编程):介绍数据分析的核心算法,例如线性和非线性回归的类型,分类技术,例如逻辑回归,朴素贝叶斯,SVM,决策树(香草决策树,随机森林,增强),无监督学习方法(例如聚类,神经网络介绍)
高级机器学习(使用Python编程):专为对人工智能有浓厚兴趣的学生而设,侧重于图像/文本处理的神经网络。
三、领域专长
理想情况下,这些应该基于工作兴趣/领域,以便每个学生都选择一个专门领域(例如,Web开发,移动应用程序开发,数据分析,营销分析,供应链,财务,制造等)。
数据分析专业课程这里的核心主题应该是:
数据收集和清理:这应该包括使用开源工具(例如Python / R)从网上抓取数据,连接到数据库等。此外,数据清理和ETL概念(例如重复数据删除,合并,丢失的数据估计技术也无法创建)分析数据集。
数据可视化和报告:使用SAS / SAP或R / Python等工具创建BI仪表板,通过可视化和数据
数据分析应用程序1/2:以业务为中心完成端到端数据分析项目。在最后几年中,应该重复两次该主题。它应该非常重要地包括连接到实际数据库和在生产中部署模型,而不仅仅是对静态数据集的临时数据分析。
高级数据计算:此处的学生应使用开源和专有工具(例如Hadoop / Spark,HANA或其他MPP数据库)创建具有大规模数据分析的项目