课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
Python 开发 AI 主要通过环境搭建、数据处理、模型构建、训练优化、部署应用五个核心环节实现,结合深度学习框架和丰富的工具库,能够覆盖从算法设计到生产落地的全流程。以下是具体步骤和关键工具:

|
|
pip install numpy pandas matplotlib scikit-learn tensorflow keras torch torchvision |
|
|
fromsklearn.model_selectionimporttrain_test_split |
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
fromsklearn.ensembleimportRandomForestClassifier |
|
|
model = RandomForestClassifier(n_estimators=100) |
|
|
model.fit(X_train, y_train) |
|
|
fromtensorflow.kerasimportlayers, models |
|
|
model = models.Sequential([ |
|
|
layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)), |
|
|
layers.MaxPooling2D((2,2)), |
|
|
layers.Flatten(), |
|
|
layers.Dense(10, activation='softmax') |
|
|
]) |
|
|
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) |
|
|
history = model.fit(X_train, y_train, epochs=10, validation_data=(X_val, y_val)) |
|
|
model.save('my_model.h5')# 保存模型 |
|
|
loaded_model = tf.keras.models.load_model('my_model.h5')# 加载模型 |
|
|
fromflaskimportFlask, request, jsonify |
|
|
app = Flask(__name__) |
|
|
@app.route('/predict', methods=['POST']) |
|
|
defpredict(): |
|
|
data = request.json['input'] |
|
|
prediction = model.predict([data]) |
|
|
returnjsonify({'result': prediction.tolist()}) |