
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
2016 年已经过去,BEEVA Labs 数据分析师 Ricardo Guerrero Gomez-Ol 近日在 Medium 上发表了一篇文章,盘点了目前最流行的深度学习框架。为什么要做这一个盘点呢?他写道:「我常听到人们谈论深度学习——我该从哪里开始呢?TensorFlow 是现在最流行的吧?我听说 Caffe 很常用,但会不会太难了?在 BEEVA Labs,我们常常需要应对许多不同的深度学习库,所以我希望能够将我们的发现和感想分享出来,帮助那些刚刚进入深度学习这一美丽世界的人。
一、TensorFlow
对于那些听说过深度学习但还没有太过专门深入的人来说,TensorFlow 是他们最喜欢的深度学习框架,但在这里我要澄清一些事实。 在 TensorFlow 的官网上,它被定义为「一个用于机器智能的开源软件库」,但我觉得应该这么定义:TensorFlow 是一个使用数据流图(data flow graphs)进行数值计算的开源软件库。在这里,他们没有将 TensorFlow 包含在「深度学习框架」范围内,而是和 Theano 一起被包含在「图编译器(graph compilers)」类别中。 在结束了 Udacity 的 Deep Learning 课程(#/course/deep-learning–ud730)之后,我的感觉是 TensorFlow 是一个非常好的框架,但是却非常低层。使用 TensorFlow 需要编写大量的代码,你必须一遍又一遍地重新发明轮子。而且我并不是唯一一个这么想的人。Andrej Karpathy 在 Twitter 上就多次吐过槽: 推文:我希望 TensorFlow 能标准化我们的代码,但它是低层面的,所以我们在其上面的层上分道扬镳了:Slim、PrettyTensor、Keras、TFLearn … 比如:我们在 OpenAI 使用 TensorFlow,但我们似乎都更喜欢其它框架,我们有些人还写自定义代码。叹 几个月前,我去参加了「Google Experts Summit: TensorFlow, Machine Learning for everyone, with Sergio Guadarrama」。Sergio 是开发 TensorFlow 的一位工程师,但他在会上没有展示 TensorFlow,而是展示了一个在 TensorFlow 上工作的更高层的库 tf.contrib:#/tutorials/tflearn/。我的看法是:他们内部已经意识到如果要让更多人使用 TensorFlow,他们就需要以更高的抽象水平在其上创建一些层,从而简化 TensorFlow 的使用。 TensorFlow 支持 Python 和 C++,也允许在 CPU 和 GPU 上的计算分布,甚至支持使用 gRPC 进行水平扩展。 总结:TensorFlow 非常好,但你必须了解它好在哪里。如果你不想什么事都自己手动去做和重新发明轮子,你可以使用更简单的库(安利一下 Keras)。
二、 Theano
Theano 是最老牌和最稳定的库之一。据我所知,深度学习库的开端不是 Caffe 就是 Theano。 和 TensorFlow 类似,Theano 是一个比较低层的库。也因此它并不适合深度学习,而更适合数值计算优化。它支持自动的函数梯度计算,带有 Python 接口并集成了 Numpy,这使得它从一开始就成为了通用深度学习领域最常使用的库之一。 今天,Theano 依然效果良好,但由于它不支持多 GPU 和水平扩展,在 TensorFlow 的热潮下(它们针对同一个领域),Theano 已然开始被遗忘了。
三、 Keras
「You have just found Keras.」
上面这句话是你打开文档页面时看到的第一句话。我还记得我第一次发现 Keras 的时候。那时候我正在柏林解决 Data Science Retreat 的最后一个项目,为此我努力进入了深度学习库的世界。我在起步时就已经有了足够的深度学习知识,但我没有时间自己手动编写功能,也没有时间探索和学习一个新的库(截止时间不到 2 个月,而我还有课要上)。然后我发现了 Keras。 我真的很喜欢 Keras,因为它的句法是相当明晰的,它的文档也非常好(尽管相对较新),而且它支持我已经掌握的语言 Python。它的使用非常简单轻松;我们也能很直观地了解它的指令、函数和每个模块之间的链接方式。 Keras 是一个非常高层的库,可以工作在 Theano 和 TensorFlow(可以配置)之上。另外,Keras 强调极简主义——你只需几行代码就能构建一个神经网络。在这里你可以比较一下 Keras 和 TensorFlow 实现相同功能时所需的代码。
四、 Lasagne
Lasagne 是一个工作在 Theano 之上的库。它的使命是简化一点深度学习算法之下的复杂计算,同时也提供了一个更加友好的接口(也是 Python 的)。这是一个老牌的库,并且很长时间以来它都是一个扩展能力很强的工具;但在我看来,它的发展速度赶不上 Keras。它们的适用领域都差不多,但 Keras 有更好的文档、也更完整。
五、DSSTNE
DSSTNE 的发音同 Destiny,是一个酷劲十足的框架却总是被忽略。为什么?除去其他的因素不谈,原因在于这个框架不具有普适性,不是为一般常见任务所设计的。DSSTNE 框架只做一件事——推荐系统,但把这件事做到了极致。既不是为研究而设计,也不是为测试 idea 而设计(来源其官方网站的宣传语),DSSTNE 框架是为量产而设计。 我们已在 BEEVA 上做一些实验测试了,目前我已经感觉到这是一个运行非常快的工具并且能够得到非常好的运行结果(平均准确率均值——mAP 很高)。为了达到这一速度,DSSTNE 框架用 GPU 运行,这也是它的弊端之一:不同于篇中分析的其他框架或者库,这个框架不支持使用者随意在 CPU 和 GPU 中切换,而这可能会对有些尝试有用,但我们在 DSSTNE 里做这样的尝试时是不被框架所允许的。 其他的感受就是迄今为止 DSSTNE 还不是一个足够成熟的项目,而且它封装的太严密了(「black box」)。如果我们想深入了解这个框架的运行机制是什么,我们必须且只能去看它的源码,并且你需要完成很多必须完成的设置(「TODO」)才可以看到。同时,关于这个框架的在线教程不多,而能让开发者进行操作尝试的指导就更少了。我的意见是再等 4 个月看看 DSSTNE 的最新版本。不能不说 DSSTEN 的确是一个很有意思的项目但还需要一点成长空间。 还想说明一点,这个框架对编程能力没有要求。DSSTNE 框架通过其终端的命令行来执行相关操作。 到目前为止,很多我知道也很流行的框架和库我还没有用过,我不能给出更多具体的细节。
看了上面的这些信息之后,我想告诉大家:如果你想进入这一领域, 想做好这方面的技术;你应该首先学习 Python 。尽管这一领域还支持其它很多语言,但 Python 是应用范围最广而且最简单的一个。但是为什么要选择 Python 呢——毕竟 Python 速度这么慢?因为大多数的库都使用的是符号式语言(symbolic language)方法而非命令式语言(imperative language)方法。
解释一下也就是说:不是一条接一条地执行你的指令,而是根据你给出的所有指令创建一个计算图(computing graph)。这个图被内部优化和编译成可执行的 C++ 代码。这样你就能同时利用上两个世界的最优之处:Python 带来的开发速度和 C++ 带来的执行速度。 人们对深度学习的兴趣越来越大了,但人们并不愿意等待算法训练所需的大量计算时间(而且我说的是 GPU,想都不要想只使用 CPU)。这也是多 GPU 支持、多机器上的水平扩展甚至定制硬件最近开始得势的原因。
如果大家想了解更多的IT技术知识和IT行业更多的资讯,行业来佛山达内IT培训机构进行更多的了解和咨询。